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HF and CAS calculations for linear geometry of Fe(CH)2 with D∞h symmetry have
been performed. The basis sets used were DZ and DZ + P with ECP on the iron atom. Two
closed-shell and one quintet RHF wave functions have been found, ΦRHF

1 , ΦRHF
2 and ΦRHF(Q)

3 .
All of them are singlet and triplet unstable in the wide range of Fe–CH distances. Singlet
instability leads to the Charge Density Wave (CDW) broken-symmetry wave function with
two electrons on carbon px or py orbital in the dissociation limit. Triplet instabilities lead
to two broken-symmetry HF wave functions of Axial Spin Density Wave (ASDW) type,
ASDW1 and ASDW2. In the dissociation limit they give carbon atoms with two electrons
on px and py orbitals coupled to singlet and triplet, respectively. The stability conditions for
CDW, ASDW1 and ASDW2 instabilities have been derived. Other HF wave functions with
spin symmetry unrestricted have been also found. CAS(8,8), CAS(10,10) and CAS(12,12)
calculations for singlet, triplet and quintet states of Fe(CH)2 have been carried out. In all
CAS calculations the singlet state has the lowest energy. The Fe–CH equilibrium distances
obtained from closed-shell RHF wave functions are much shorter and from broken-symmetry
wave functions are much longer than those obtained from CAS calculations.

1. Introduction

The Hartree–Fock equations are nonlinear equations, and, consequently, they can
have more than one solution. In some cases there exist HF wave functions of lower
symmetry than that of the molecule and of lower energy than energy corresponding to
the symmetry adapted RHF wave function. This phenomenon was called “the sym-
metry dilemma” by Löwdin [46]. Slater showed [73] that for the large interatomic
distances in the hydrogen molecule the broken-symmetry wave function is lower in
energy than the symmetric one. The occurrence of symmetry breaking is a sign that
correlation effects are important in the system. All types of HF solutions were classified
by Fukutome [28–30,61] according to the various symmetry groups. When a symme-
try broken wave function exists, the RHF symmetry adapted wave function is unstable
(it is not a minimum in the variational space). HF instabilities occur in singly bonded
systems for large interatomic distances. The HF instabilities for cyclic and linear
polyenes were extensively studied and the stability conditions for these systems were
derived [63–70,75]. The class of molecules for which the wave functions are unstable
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at the equilibrium atom–atom distance are molecules with multiple bonds [22,39–41],
linear carbon clusters [44], systems with metal–metal bonds and organometallic mole-
cules [4,10–14,17–19,21,23,33,37,55,77,78]. HF calculations for one-dimensional met-
als lead to spin density wave (UHF) and charge density wave (RHF) soutions [49,50].
HF instabilities are also relevant to the description of hole states in molecules [1,5,6,16].
The broken-symmetry method has been designed and used with significant success to
interpret magnetic and spectroscopic properties of biologically important systems and
transition metal dimers [7,34,45,51,54,56–60,72,82,84]. The HF instabilities appear
in reactive systems, transition states of reactions, unstable intermediates and other
systems with unusal electronic properties [76,79–81,83,85]. Instabilities occur also
in DFT calculations but they are less pronounced than HF instabilities, which is re-
lated to effects of electron correlation included in the DFT correlation potentials [32].
Symmetry breaking plays also a role in CC, MCSCF and perturbation theory calcula-
tions [3,31,38,42,43,52,74]. The different aspects of symmetry breaking in atoms and
molecules and the HF stability related problems are reviewed in [20,30,53,62].

In this work we have studied the HF instabilities for the model organometallic
molecule bis(methyne)iron, Fe(CH)2. We have examined instabilities which localize
different pairs of electrons in different parts of the molecule, that is, singlet instabil-
ities leading to Charge Density Wave (CDW) broken-symmetry solutions, and insta-
bilities localizing electrons of different spins in different parts of the molecule, that
is, triplet instabilities leading to Axial Spin Density Wave (ASDW) broken-symmetry
solutions.

2. Method of calculations

The calculations have been carried out with the GAMESS program [25]. The
valence double-ζ basis of Dunning and Huzinaga [8,24] has been used for carbon and
hydrogen atoms. The core electrons of Fe have been replaced by an effective core
potential [36] and the basis set of DZ quality of Hay and Wadt [36] has been used for
valence electrons. This basis, which is further referred to as B1 has been used in all HF
calculations. We subsequently performed some HF calculations and CAS calculations
with two basis sets. The first was B1 and the second, B2, was formed by adding one
polarization p function on the hydrogen with exponent 1.0, one polarization d function
on the carbon with exponent 0.75, and one additional diffuse d function on the iron
atom [35].

The linear structure of D∞h symmetry was assumed for Fe(CH)2. The energy
curves have been determined for different distances of Fe–CH, equal for both ligands.

3. Results and discussion

Fe(CH)2 can be considered as a result of ethyne dissociation with Fe atom par-
ticipation as a catalyst. The ligated carbyne and bis(carbyne) complexes of transition
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metals are known [2,15,26,27,47,48,71]. The high symmetry of the linear Fe(CH)2

molecule permits facile investigation of the symmetry properties and symmetry break-
ing in the HF wave functions of this system.

3.1. HF wave functions for Fe(CH)2

We started from the closed-shell RHF calculations. The usual iterative procedure
leads to a solution which we denote ΦRHF

1 . From among nine MOs occupied by eigh-
teen valence electrons, the two lowest σg and σu describe plus and minus combinations
of σC–H and are common to all HF wave functions found. They can be omitted from
further considerations. The HF determinant for the remaining seven MOs is

ΦRHF
1 =

∣∣1σ2
g(pzC)1σ2

u(pzC)d2
xyd

2
x2−y2 2σ2

g(dz2)π2
xgπ

2
yg

∣∣, (3.1.1)

where

πxg = adxz + b(pxCA − pxCB ), (3.1.2)

πyg = adyz + b(pyCA − pyCB ). (3.1.3)

Coefficients a and b are here 0.27 and 0.38, respectively (these are coefficients
for the first function of the double-ζ basis). There is a significant admixture of dz2

orbital to 1σg orbital and of pz orbitals of carbon to 2σg orbital for this wave function.
ΦRHF

1 is unstable, leading to three broken-symmetry solutions, one of CDW and
two of ASDW type:

ΦCDW
1 =

∣∣1σ2
g(pzC)1σ2

u(pzC)d2
xyd

2
x2−y22σ2

g(dz2)π2
xAπ

2
yB

∣∣, (3.1.4)

ΦASDW1
1 =

∣∣1σ2
g(pzC)1σ2

u(pzC)d2
xyd

2
x2−y22σ2

g(dz2)πxAπ̄yAπ̄xBπyB
∣∣, (3.1.5)

ΦASDW2
1 =

∣∣1σ2
g(pzC)1σ2

u(pzC)d2
xyd

2
x2−y22σ2

g(dz2)πxAπyAπ̄xBπ̄yB
∣∣. (3.1.6)

The energy as a function of the Fe–CH distance for ΦRHF
1 , ΦCDW

1 , ΦASDW1
1 and ΦASDW2

1
solutions is shown in figure 1. The π orbitals in these three wave functions are localized
on atomic orbitals of different carbon atoms which can be visualized in a simple way
(cf. scheme 1). At shorter Fe–CH distances localization is not complete, the πxA and
πyA orbitals have tails on carbon B and vice versa. This localization takes place at
a very short Fe–C distance, much shorter than the minimum energy distance of ΦRHF

1
(figure 1).

There is another closed shell RHF wave function, ΦRHF
2 , which is lower in energy

than ΦRHF
1 . The respective determinant formed from the seven highest occupied MOs

is

ΦRHF
2 =

∣∣d2
xyd

2
xzd

2
yzσ

2
g(pzC)σ2

u(pzC)π2
xuπ

2
yu

∣∣, (3.1.7)

where, after ommiting normalization,
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Figure 1. Energy curves for ΦRHF
1 and broken-symmetry solutions ΦCDW

1 , ΦASDW1
1 and ΦASDW2

1 .

πxu = pxCA + pxCB , (3.1.8)

πyu = pyCA + pyCB . (3.1.9)

This wave function is also unstable. We get three broken-symmetry solutions arising
from ΦRHF

2 similar to those for ΦRHF
1 :

ΦCDW
2 =

∣∣d2
xyd

2
xzd

2
yzσ

2
g(pzC)σ2

u(pzC)π2
xAπ

2
yB

∣∣, (3.1.10)

ΦASDW1
2 =

∣∣d2
xyd

2
xzd

2
yzσ

2
g(pzC)σ2

u(pzC)πxAπ̄yAπ̄xBπyB
∣∣, (3.1.11)

ΦASDW2
2 =

∣∣d2
xyd

2
xzd

2
yzσ

2
g(pzC)σ2

u(pzC)πxAπyAπ̄xBπ̄yB
∣∣. (3.1.12)

Again the π orbitals are localized on different carbon atoms in the way described
in scheme 1. The σ(pzC) orbitals can be localized by transformation between σg
and σu occupied orbitals. Such transformation does not cause an energy change and
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Scheme 1.

symmetry breaking. The energy curves for ΦRHF
2 and the broken-symmetry wave

functions arising from it as functions of the Fe–CH distance are shown in figure 2.
The localization starts at a very short Fe–CH distance, like in the case of the

wave function ΦRHF
1 . The broken-symmetry wave functions arising from ΦRHF

1 and
ΦRHF

2 will dissociate to CH groups with different C atom configurations (p2
x or p2

y for
CDW, p̄xpy or pxp̄y for ASDW1 and pxpy for ASDW2) and to the high-energy atomic
states Fe atom, due to closed-shell d orbitals occupation. We calculated the RHF wave
function in which the Fe atom has four unpaired electrons:

ΦRHF(Q)
3 =

∣∣dz2dxzdyzdxyd
2
x2−y2σ

2
g(pzC)σ2

u(pzC)π2
xgπ

2
yg

∣∣, (3.1.13)

where πxg and πyg are similar as for ΦRHF
1 , but with considerably smaller coefficients

on d orbitals (a = 0.17, b = 0.43). As in the case of ΦRHF
1 and ΦRHF

2 , π orbitals
localize on different carbon atoms giving three broken-symmetry wave functions CDW,
ASDW1 and ASDW2:

ΦCDW
3 =

∣∣dz2dxzdyzdxyd
2
x2−y2σ

2
g(pzC)σ2

u(pzC)π2
xAπ

2
yB

∣∣, (3.1.14)

ΦASDW1
3 =

∣∣dz2dxzdyzdxyd
2
x2−y2σ

2
g(pzC)σ2

u(pzC)πxAπ̄yAπ̄xBπyB
∣∣, (3.1.15)

ΦASDW2
3 =

∣∣dz2dxzdyzdxyd
2
x2−y2σ

2
g(pzC)σ2

u(pzC)πxAπyAπ̄xBπ̄yB
∣∣. (3.1.16)

The energy of ΦRHF(Q)
3 and broken-symmetry wave functions originating from it as

a function of the Fe–CH distance is shown in figure 3. It was not possible to find
the energy of CDW and ASDW1 solutions for smaller Fe–CH distances in this case,
because of convergency problems.

Symmetry-broken molecular orbitals for ΦRHF
1 , ΦRHF

2 and ΦRHF(Q)
3 can be defined

as a combination of occupied and virtual RHF orbitals:
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Figure 2. Energy curves for ΦRHF
2 and broken-symmetry solutions ΦCDW

2 , ΦASDW1
2 and ΦASDW2

2 .

CDW: πxA = cosλπxg(u) + sinλπ∗xu(g),

π̄xA = cosλπ̄xg(u) + sinλπ̄∗xu(g), (3.1.17)
πyB = cosλπyg(u) − sinλπ∗yu(g),

π̄yB = cosλπ̄yg(u) − sinλπ̄∗yu(g),

ASDW1: πxA = cos λπxg(u) + sinλπ∗xu(g),

π̄xB = cos λπ̄xg(u) − sinλπ̄∗xu(g), (3.1.18)
π̄yA = cos λπ̄yg(u) + sinλπ̄∗yu(g),

πyB = cos λπyg(u) − sinλπ∗yu(g),



M. Jaworska, P. Lodowski / Symmetry breaking in HF wave functions 13

Figure 3. Energy curves for ΦRHF(Q)
3 and broken-symmetry solutions ΦCDW

3 , ΦASDW1
3 and ΦASDW2

3 , together
with energy curves for ΦUHF(N) and ΦUHF(S).

ASDW2: πxA = cosλπxg(u) + sinλπ∗xu(g),

π̄xB = cosλπ̄xg(u) − sinλπ̄∗xu(g), (3.1.19)
πyA = cosλπyg(u) + sinλπ∗yu(g),

π̄yB = cosλπ̄yg(u) − sinλπ̄∗yu(g),

where the subscripts in parentheses correspond to the wave function ΦRHF
2 with πu

orbitals occupied. The transformation between virtual orbitals and occupied orbitals
leads to localization and considerable lowering of energy for the three wave functions
ΦRHF

1 , ΦRHF
2 , ΦRHF(Q)

3 . At the dissociation limit, cosλ = sin λ and λ = π/4.
In the case when πxg and πxu orbitals were all occupied the transformation of the

type (3.1.17)–(3.1.19) would occur between occupied orbitals and would not lead to
symmetry breaking. We calculated the energy for several HF wave functions with four
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Table 1
Calculated energies, Fe–CH distances (Req) and 〈Ŝ 2〉 values

for HF wave functions.

Wave function Req [Å] E [a.u.] 〈Ŝ 2〉

Basis B1

ΦRHF
1 1.89 −198.806 0

ΦCDW
1 1.99 −198.970 0

ΦASDW1
1 1.99 −199.057 1.99

ΦASDW2
1 2.01 −199.112 2.03

ΦRHF
2 1.82 −198.898 0

ΦCDW
2 1.98 −199.005 0

ΦASDW1
2 1.99 −199.093 1.97

ΦASDW2
2 2.01 −199.153 2.03

ΦRHF(Q)
3 2.00 −198.952 6.02

ΦCDW
3 2.01 −199.190 6.02

ΦASDW1
3 2.02 −199.280 7.91

ΦASDW2
3 2.03 −199.339 7.98

ΦUHF(N) 2.07 −199.322 20
ΦUHF(S) 1.99 −199.354 3.91

Basis B2

ΦUHF(S) 1.98 −199.377 3.91

π orbitals having the same spin. The limiting cases are ΦUHF(S) with equal number
of alpha and beta electrons (formally singlet, but the wave function does not have the
correct 〈Ŝ 2〉 value) and ΦUHF(N) with eight unpaired alpha electrons. The occupation
of molecular orbitals for these two wave functions is

ΦUHF(S) =
∣∣dxydxzdyzdz2d2

x2−y2σ
2
g(pzC)σ2

u(pzC)π̄xgπ̄ygπ̄xuπ̄yu
∣∣, (3.1.20)

and

ΦUHF(N) =
∣∣dxydxzdyzdz2d2

x2−y2σ
2
g(pzC)σ2

u(pzC)πxgπygπxuπyu
∣∣, (3.1.21)

where ΦUHF(S) is a spin unrestricted wave function. The 〈Ŝ 2〉 value for the minimum
distance Fe–CH is 3.91 (table 1) which differs significantly from the 0 value for singlet
wave functions. The energy curves for ΦUHF(S) and ΦUHF(N) are also shown in figure 3.

We have tried other spin couplings leading to two, four and six unpaired electrons
for one-determinantal wave function, but in each case the obtained energy was higher
than that of ΦUHF(S). The energy and the Fe–CH distance for calculated HF wave
functions are collected in table 1, and orbital populations and charges are given in
table 2. The two lowest energy HF wave functions are ΦUHF(S) and ΦASDW2

3 . In
general, there are possibly many single-determinantal wave functions for Fe(CH)2

with spatial and/or spin symmetry broken which are close in energy. They lead to
different Fe–CH equilibrium distances as it may be seen from table 1.
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Table 2
Orbital populations and charges for HF wave functions of Fe(CH)2.

Wave function Fe orbital populationsa Charges

dz2 dx2 dy2 dxz dyz dxy s p dtotal Fe C H

Basis B1

ΦRHF
1 1.19 1.31 1.31 0.47 0.47 2.00 0.64 −0.07 7.32 0.70 −0.48 0.13

ΦCDW
1 1.30 1.31 1.31 0.17 0.17 2.00 0.61 0.11 6.98 1.04 −0.68 0.16

ΦASDW1
1 1.31 1.31 1.31 0.13 0.13 2.00 0.63 0.06 6.88 1.14 −0.72 0.15

ΦASDW2
1 1.32 1.31 1.31 0.11 0.11 2.00 0.66 0.03 6.85 1.16 −0.72 0.14

ΦRHF
2 0.33 −0.04 −0.04 1.92 1.92 2.00 0.49 0.81 7.39 0.64 −0.48 0.16

ΦCDW
2 0.29 −0.03 −0.03 2.00 2.00 2.00 0.45 0.28 6.96 1.06 −0.70 0.17

ΦASDW1
2 0.29 −0.03 −0.03 2.01 2.01 2.00 0.46 0.16 6.87 1.16 −0.74 0.16

ΦASDW2
2 0.21 −0.04 −0.04 2.01 2.01 2.00 0.48 0.11 6.84 1.18 −0.72 0.13

ΦRHF(Q)
3 0.76 0.64 0.64 1.21 1.21 2.00 0.48 −0.04 6.90 1.10 −0.72 0.17

ΦCDW
3 0.79 0.64 0.64 1.06 1.06 2.00 0.54 0.19 6.92 1.11 −0.72 0.16

ΦASDW1
3 0.79 0.64 0.64 1.05 1.05 2.00 0.55 0.11 6.83 1.18 −0.75 0.16

ΦASDW2
3 0.80 0.64 0.64 1.04 1.04 2.00 0.56 0.08 6.80 1.20 −0.74 0.14

ΦUHF(N) 0.83 0.64 0.64 1.02 1.02 2.00 0.53 0.08 6.76 1.26 −0.78 0.15
ΦUHF(S) 0.78 0.63 0.63 1.07 1.07 2.00 0.59 0.05 6.82 1.18 −0.72 0.13

Basis B2

ΦUHF(S) 0.62 0.61 0.61 1.06 1.06 2.00 0.69 0.07 6.72 1.30 −0.76 0.11

a Populations on s and p valence orbitals were summed up.

3.2. The stability condition

For the Hartree–Fock wave function to be stable, the second variation of the
energy functional expressed in the form

δ2EHF(Φ) =
1
2
λ+Ωλ (3.2.1)

must be positive. It means that the instability matrix Ω has to be positive definite (that
is, has to have all eigenvalues positive). The Ω matrix elements for instabilities of real
character are given for the singlet instability by [30]

Ωma,nb = Fmnδab − Fbaδmn + 4(ma|nb)− (mn|ab)− (mb|na), (3.2.2)

and for the triplet instability by

Ωma,nb = Fmnδab − Fbaδmn − (mn|ab)− (mb|na), (3.2.3)

where m,n label the virtual orbitals and a, b the occupied ones. Fmn are elements of
the Fock matrix here, and (mn|ab) are two-electron integrals in Mulliken notation.
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3.3. The instability conditions for CDW, ASDW1 and ASDW2 solutions

For π orbitals in ΦRHF
1 , ΦRHF

2 , ΦRHF(Q)
3 the instability matrix Ω is an 8 × 8

matrix. Instead of constructing and diagonalizing Ω, the stability condition for the
three instabilities can be found in another way. The RHF wave function is unstable
when

E
(
ΦRHF)−E(ΦCDW,ASDW) > 0, (3.3.1)

the equality corresponding to the instability threshold.
Putting the orbitals of broken symmetry in the form (3.1.17)–(3.1.19) into Slater

determinant and applying Condon–Slater rules (using the fact that the near instability
threshold λ is close to 0 which allows to use approximations sinλ ≈ λ, cos λ ≈
1 − (1/2)λ2 and to omit terms in power of λ higher than 2), we get the following
instability conditions for CDW, ASDW1 and ASDW2 solutions:

CDW : επ∗
xu(g)
− επxg(u) + 3(πxgπxu|πxgπxu)− (πxgπxg|πxuπxu)

− 4(πxgπxu|πygπyu) + (πxgπyu|πygπxu) + (πxgπyg|πxuπyu) 6 0, (3.3.2)

ASDW1: επ∗xu(g)
− επxg(u) − (πxgπxu|πxgπxu)− (πxgπxg|πxuπxu)

+ (πxgπyu|πygπxu) + (πxgπyg|πxuπyu) 6 0, (3.3.3)

ASDW2: επ∗xu(g)
− επxg(u) − (πxgπxu|πxgπxu)− (πxgπxg|πxuπxu)

− (πxgπyu|πygπxu)− (πxgπyg|πxuπyu) 6 0, (3.3.4)

where ε is an orbital energy, star denotes virtual orbital and the subscripts in parentheses
correspond to ΦRHF

2 . The same conditions hold for πy orbitals, these three instabilities
are doubly degenerate.

As it can be seen in figures 1–3, conditions (3.3.2)–(3.3.4) are fulfilled even for
the very short Fe–CH distances. The three instabilities leading to the broken-symmetry
UHF solutions appear at the Fe–CH distance much shorter than the RHF equilibrium
distance. Condition (3.3.4) is fulfilled as the first one. This leads to the ASDW2

broken-symmetry wave function. This wave function in the dissociation limit has two
carbon atoms with two electrons coupled to the triplet on px and py orbitals, which
has the lowest energy on the HF level. The ASDW1 instability, leading to singlet
coupled carbon px and py electrons in the dissociation limit, appears as the second
one. The CDW instability appears as the last one, with doubly occupied px (or py)
carbon orbitals in the dissocitation limit and with the highest energy.
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3.4. CAS calculations

We have performed three sets of CAS calculations for Fe(CH)2, CAS(8,8) with
eight electrons in eight active orbitals, CAS(10,10) with ten electrons in ten active
orbitals and CAS(12,12) with twelve electrons in twelve active orbitals. CAS cal-
culations have been done using the symmetry group D2h. In all cases the energies
of singlet, triplet and quintet wave functions have been calculated. In the case of
CAS(12,12) quintet calculations the number of CSFs produced was too large, and we
restricted the number of excitations to ten. In this case the wave function was not of
the CAS type. We checked for singlet and triplet wave functions that this restriction
does not influence calculated energy. As the starting orbitals for CAS calculations
we have taken the natural orbitals from the ΦUHF(S) wave function. As the active
space for CAS(8,8) we have taken ΦASDW2

3 natural orbitals wiht occupation numbers
between 1.28 and 0.73. They are πxg, πxu, πyg, πyu and four singly occupied Fe
d orbitals (dz2 , dxz , dyz , dxy). For CAS(10,10) we have taken additionally σg and
σ∗g orbitals. The σ∗u natural orbital of ΦUHF(S) has a smaller occupation number than
σ∗g . Even when starting CAS(10,10) with σ∗u orbital it converted to σ∗g during the
iteration process. For CAS(12,12) we have added one σu and one σ∗u orbital to the
active space. We have performed CAS calculations wih basis set B1 for three spin
states, singlet, triplet and quintet. The energies and equilibrium Fe–CH distances for
CAS wave functions are presented in table 3. The calculated energy separation be-
tween singlet and triplet is 2.5 kcal/mol for CAS(8,8), 3.1 kcal/mol for CAS(10,10)
and 2.5 kcal/mol for CAS(12,12) with the singlet lying lower. We have repeated
CAS calculations with basis set B2 to see if the singlet–triplet ordering will be re-
tained. The obtained singlet–triplet energy differences are approximately the same
as for the smaller basis (2.5 kcal/mol for CAS(8,8), 3.1 kcal/mol for CAS(10,10)
and 3.1 kcal/mol for CAS(12,12)). The occupation numbers of natural orbitals for
CAS, ΦASDW2

3 and ΦUHF(S) wave functions are shown in table 4. In all CAS cal-
culations the dxz and dyz orbitals are almost evenly distributed between πg and π∗g
CAS natural orbitals. The comparison of UHF and CAS natural orbital occupation
numbers from table 4 show that UHF πg occupation numbers are much lower and
π∗g much higher than respective CAS occupation numbers. Atomic orbital populations
and charges for CAS wave functions are presented in table 5. From tables 1 and 3
it can be seen that the RHF wave functions yield the Fe–CH bond distance shorter
and spatial and/or spin unrestricted HF wave functions yield this distance longer than
CAS wave functions (with the exception of quintet wave function ΦRHF(Q)). For both
basis sets the lowest energy UHF wave function ΦUHF(S) has energy lower than the
CAS(8,8) wave function. The explanation may be that the CAS(8,8) active space
comprises four π orbitals and four singly occupied d Fe orbitals and takes into ac-
count non-dynamical correlation in this space, while ΦUHF(S) takes into account also
some σ orbital correlation which is manifested by its σ orbitals occupation num-
bers.
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Table 3
Fe–CH bond distances (Req) and energies for CAS wave functions of Fe(CH)2.

Wave function Req [Å] E [a.u.] E − E(S) [kcal/mol]

Basis B1

CAS(8,8) (S)a 1.95 −199.350 0.0
CAS(8,8) (T)b 1.96 −199.346 2.5
CAS(8,8) (Q)c 1.98 −199.338 7.5

CAS(10,10) (S) 1.93 −199.366 0.0
CAS(10,10) (T) 1.94 −199.361 3.1
CAS(10,10) (Q) 1.95 −199.351 9.4

CAS(12,12) (S) 1.94 −199.371 0.0
CAS(12,12) (T) 1.94 −199.367 2.5
CAS(12,12) (Q) 1.96 −199.359 7.5

Basis B2

CAS(8,8) (S) 1.94 −199.371 0.0
CAS(8,8) (T) 1.95 −199.367 2.5
CAS(8,8) (Q) 1.96 −199.358 8.2

CAS(10,10) (S) 1.92 −199.389 0.0
CAS(10,10) (T) 1.93 −199.384 3.1
CAS(10,10) (Q) 1.94 −199.373 10.0

CAS(12,12) (S) 1.93 −199.407 0.0
CAS(12,12) (T) 1.93 −199.402 3.1
CAS(12,12) (Q) 1.95 −199.390 10.7

a S – singlet; b T – triplet; c Q – quintet.

Table 4
Natural orbital occupation numbers for CAS wave functions and for ΦASDW2

3 and ΦUHF(S).

Wave function Natural orbital occupation numbers

σu σg πxg πyg πxu πyu dxy dz2 π∗xg π∗yg σ∗g σ∗u

Basis B1

CAS(12,12) (S) 1.981 1.971 1.471 1.471 0.999 0.999 1.000 1.000 0.530 0.530 0.037 0.011
CAS(12,12) (T) 1.981 1.971 1.446 1.446 1.000 1.000 1.000 1.000 0.555 0.555 0.036 0.011
CAS(12,12) (Q) 1.981 1.974 1.382 1.382 1.000 1.000 1.000 1.000 0.618 0.618 0.034 0.010
ΦASDW2

3 1.994 1.982 1.188 1.188 1.000 1.000 1.000 1.000 0.811 0.811 0.018 0.006
ΦUHF(S) 1.994 1.982 1.278 1.278 1.000 1.000 1.000 1.000 0.721 0.721 0.018 0.006

Basis B2

CAS(12,12) (S) 1.981 1.970 1.467 1.467 0.999 0.999 1.000 1.000 0.534 0.534 0.037 0.011
CAS(12,12) (T) 1.981 1.971 1.441 1.441 1.000 1.000 1.000 1.000 0.560 0.560 0.036 0.010
CAS(12,12) (Q) 1.982 1.973 1.378 1.378 1.000 1.000 1.000 1.000 0.622 0.622 0.034 0.010
ΦUHF(S) 1.993 1.981 1.277 1.277 1.000 1.000 1.000 1.000 0.723 0.723 0.019 0.007
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Table 5
Orbital populations on iron atom and charges for CAS wave functions of Fe(CH)2.

Wave function Atomic orbital populations on Fea Charges

dz2 dx2 dy2 dxz dyz dxy s p dtotal Fe C H

Basis B1

CAS(8,8) (S) 0.76 1.13 1.13 1.11 1.11 1.00 0.58 0.06 6.24 1.12 −0.70 0.14
CAS(8,8) (T) 0.77 1.13 1.13 1.11 1.11 1.00 0.57 0.06 6.25 1.14 −0.71 0.14
CAS(8,8) (Q) 0.78 1.13 1.13 1.08 1.08 1.00 0.55 0.07 6.20 1.18 −0.74 0.15

CAS(10,10) (S) 0.75 1.13 1.13 1.12 1.12 1.00 0.62 0.04 6.25 1.11 −0.69 0.13
CAS(10,10) (T) 0.75 1.13 1.13 1.11 1.11 1.00 0.62 0.02 6.23 1.10 −0.69 0.14
CAS(10,10) (Q) 0.77 1.13 1.13 1.10 1.10 1.00 0.61 0.06 6.23 1.12 −0.70 0.14

CAS(12,12) (S) 0.75 1.13 1.13 1.12 1.12 1.00 0.65 0.05 6.25 1.06 −0.67 0.14
CAS(12,12) (T) 0.75 1.13 1.13 1.12 1.12 1.00 0.65 0.06 6.25 1.06 −0.67 0.14
CAS(12,12) (Q) 0.77 1.13 1.13 1.10 1.10 1.00 0.63 0.07 6.23 1.07 −0.68 0.14

Basis B2

CAS(8,8) (S) 0.63 1.11 1.11 1.10 1.10 1.00 0.66 0.07 6.05 1.25 −0.74 0.12
CAS(8,8) (T) 0.63 1.11 1.11 1.09 1.09 1.00 0.66 0.08 6.03 1.25 −0.74 0.12
CAS(8,8) (Q) 0.64 1.11 1.11 1.08 1.08 1.00 0.65 0.08 6.02 1.27 −0.75 0.12

CAS(10,10) (S) 0.58 1.10 1.10 1.11 1.11 1.00 0.75 0.05 6.00 1.23 −0.73 0.11
CAS(10,10) (T) 0.60 1.10 1.10 1.10 1.10 1.00 0.72 0.06 6.00 1.25 −0.74 0.11
CAS(10,10) (Q) 0.61 1.10 1.10 1.09 1.09 1.00 0.70 0.07 5.99 1.26 −0.74 0.12

CAS(12,12) (S) 0.58 1.10 1.10 1.10 1.10 1.00 0.75 0.06 5.98 1.23 −0.72 0.11
CAS(12,12) (T) 0.57 1.10 1.10 1.10 1.10 1.00 0.74 0.07 5.97 1.22 −0.72 0.11
CAS(12,12) (Q) 0.60 1.10 1.10 1.09 1.09 1.00 0.73 0.09 5.98 1.22 −0.73 0.11

a Populations on s and p valence orbitals were summed up.

4. Conclusions

Our calculations have showed that there are many HF wave functions for linear
Fe(CH)2. The RHF wave functions are unstable. The symmetry breaking in π orbitals
leads to HF solutions of CDW and ASDW type. These solutions have spatial and
spin symmetry broken. There are also solutions with spatial symmetry preserved, but
spin symmetry uncorrect like ΦUHF(S). Comparing the Fe–CH distance obtained from
various HF wave functions with CAS results, one can see that the RHF wave functions
yield this distance too short, and symmetry and/or spin broken wave functions give it
too long (tables 1 and 3). The broken-symmetry wave functions tend to overestimate
the correlation effects, which is reflected in the longer bond distance and much smaller
σg and πg natural orbitals occupation numbers than those for CAS wave functions.

The existence of multiple instabilities in RHF wave functions is an indication of
a large non-dynamic correlation in this system and the need for use of multireference
wave function to describe it. The UHF natural orbitals can make a good starting guess
for choosing the CAS active space orbitals. This method of choosing active space
orbitals is a well-known UNO-CAS method [9].
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